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A theory of the NMR signal dephasing due to the presence of
tissue-specific magnetic field inhomogeneities is developed for a
two-compartment model. Randomly distributed magnetized objects
of finite size embedded in a given media are modeled by ellipsoids
of revolution (prolate and oblate spheroids). The model can be ap-
plied for describing blood vessels in a tissue, red blood cells in the
blood, marrow within trabecular bones, etc. The time dependence
of the dephasing function connected with the spins inside of the ob-
jects, si, is shown to be expressed by Fresnel functions and creates a
powder-type signal in the frequency domain. The short-time regime
of the dephasing function for spins outside the objects, se, is always
characterized by Gaussian time dependence, se ∼ exp[−ζk(t/tc)2],
with ζ being a volume fraction occupied by the objects, tc being
a characteristic dephasing time, and the coefficient k depending
on the ellipsoid’s shape through the aspect ratio of its axes (a/c).
The long-time asymptotic behavior of se is always “quasispherical”-
linear exponential in time, se ∼ exp(−ζCt/tc), with the same
“spherical” decay rate for any ellipsoidal shape. For long prolate
spheroids (a/c) ¿ 1, there exists an intermediate characteristic
regime with a linear exponential time behavior and an aspect-ratio-
dependent decay rate smaller than (ζC/tc). C© 2001 Academic Press

Key Words: magnetic resonance; MRI; fMRI; susceptibility;
blood; bone.
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INTRODUCTION

It is well known that magnetic inhomogeneities play a sig
ficant role in the process of magnetic resonance signal evolu
and an analysis of this phenomenon is one of the classic top
magnetic resonance theory (1). Magnetic inhomogeneities ca
be of different origin, size, etc., and they affect the NMR sig
relaxation in different ways, some of them being undesira
with others bringing useful information about the system un
investigation. In application to MRI, these inhomogeneities
be roughly divided into three categories: macroscopic, m
scopic, and microscopic, according to their relative size s
(2). Macroscopicscale refers to magnetic field changes over
tances that are larger than the imaging voxel.Microscopicscale
refers to changes in magnetic field over distances that are

parable to atomic or molecular size, i.e., over distances m
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orders of magnitude smaller than the voxel size.Mesoscopic
scale refers to distances that are much smaller than the
size but much bigger than the atomic and molecular scale. M
scopic magnetic field inhomogeneities originate from inter
tissue-specific sources, and hence could provide importan
formation on biological tissue structure and function.

While at the earlier stages of NMR development most of
efforts were concentrated on the spin echo (SE) signal ev
tion, recent developments in MRI have focused mostly aro
free-induction decay (FID) signals. Major areas of interest h
developed from important discoveries in functional MRI (3, 4)
and MRI of trabecular bone (5, 6). For example, in the case o
blood oxygenation level-dependent (BOLD) contrast in M
paramagnetic deoxyhemoglobin in venous blood creates a m
scopic inhomogeneous magnetic field in the tissue surroun
the blood vessel network. This inhomogeneous field causes
NMR signal dephasing. Numerous attempts to quantitate
blood oxygenation level and trabecular bone structure rely
different theoretical models of NMR signal dephasing (7–16). In
all these theoretical models an imaging voxel was describe
the framework of a two-compartment model, according to wh
the magnetized objects (blood vessel, etc.) occupying a vo
fraction,ζ , with a magnetic susceptibility,χi , are embedded in
a given media (tissue matrix) with a magnetic susceptibility,χe.

Traditionally, it was assumed that the presence of magne
objects modifies the time dependence of the FID NMR sig
by a factor exp(−R′2t) (Lorentzian signal shape),

S(t) = S0(t) exp(−R′2t), [1]

whereS0(t) is a signal that would exist in a media free of o
jects. However, the theoretical consideration (9) predicted a non
Lorentzian behavior of the FID signal for those objects that
be modeled as randomly spatially distributed spheres, pa
infinitely long cylinders, or infinitely long cylinders with ran
domly distributed axis directions. In the short-time interval
signal modification factor is proportional to exp(−A∗t2),

S(t) = S0(t) exp(−A∗t2), [2]
7 1090-7807/01 $35.00
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whereas only in the long-time interval can the signal de
be described in terms of theR′2 relaxation rate constant equ
to

R′2 = Cζ/tc, tc = [4πγ (χi − χe)H0]−1. [3]

In Eq. [3]γ is a nuclear gyromagnetic ratio andH0 is an externa
magnetic field. The parameterC is a numerical factor dependin
on the geometry of the magnetized objects. It is equal to 0.40
spheres and1/3 for randomly distributed infinitely long cylin
ders (note that the numeric coefficient in the characteristic
tc in [3] is defined slightly different to that in Ref. (9)). These
theoretically predicted values of the coefficientC are in a good
agreement with the results of Monte Carlo simulations (7, 8,
10, 12) for different geometrical structures. It should also
mentioned that the result of Refs. (10, 12) confirm an importan
conclusion of the theoretical analysis (9) that in the static de
phasing regime the constantC does not depend on cylinders’
spheres’ radii.

The Gaussian relaxation rate constantA∗ also depends o
the objects’ geometry and the characteristic timetc (9). It was
hypothesized and proved with phantom (2) and in vivo (17)
studies that an analysis of this non-Lorentzian FID signal sh
can provide important information on tissue structure. Howe
real biological objects (blood vessels, for example) canno
precisely described as infinitely long cylinders or spheres
better model for blood vessels, in particular, should take
consideration the finite size of their straight segments. Th
an important issue since bothA∗ [2] andR′2 [3] depend strongly
on the objects’ geometry.

We will demonstrate in this paper that for objects of ar
trary geometry there generally exist not two but three differ
time regimes: (1) Gaussian regime similar to [2] for short tim
when only nuclei closed to objects give contribution to the F
signal dephasing, (2) first Lorentzian regime similar to [3] w
parameters depending on the objects’ geometry (here mainl
clei that are at distances not exceeding the largest object’s
hence “sensing” objects’ shape, give contribution to the sig
dephasing, and (3) second Lorentzian, or “spherical” reg
(here mainly nuclei that are at distances much bigger than
largest object’s size, hence “sensing” objects as point dipole
spheres, give contribution to the signal dephasing).

To be able to extract the information on a tissue struct
details of the FID signal should be elucidated. Herein we
establish a quantitative relationship between a FID signal
velope and the objects’ geometry in the framework of stat
cal approach (9) for magnetized objects that can be mode
by ellipsoids of revolution usually called spheroids (prolate
oblate). They can be viewed as an ellipse rotating about on
its principal axes. Prolate spheroids (“cigars”) can be consid
as an approximation for modeling the geometry of blood ves

of finite size and oblate spheroids (“pancakes”) as a model
red blood cells.
D YABLONSKIY
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GENERAL THEORY

As previously demonstrated (2, 9), in many practically impor-
tant cases of biological systems nuclear motion does not subs
tially affect dephasing of a FID signal caused by susceptibilit
induced mesoscopic magnetic field inhomogeneities. In the
circumstances, NMR signal dephasing due to field inhom
geneities occurs before molecular diffusion averages out
phases accumulated by different nuclear magnetic moment
the so-calledstatic dephasing regime(SDR). High external mag-
netic field, large susceptibility difference, and large length-sca
susceptibility inclusions favor the static dephasing regime (s
details in Ref. (9)). For example, for the blood vessel network a
H0 = 1.5 T the SDR is valid if an average radius of a blood vess
R≥ 7µm. Typical values ofR in the human brain are 3–5µm
for small capillaries, 10–50µm and larger for venules, veins,
etc. It means that diffusion phenomena do not play an import
role in the NMR signal formation for the mid-to-large vesse
network. For higher external field,H0 > 4 T, SDR dominates
for all blood vessels. In all further consideration, we assume th
the criterion of validity of the SDR is satisfied.

Consider the two-compartment system consisting of a lar
number,N À 1, of magnetized objects of magnetic susceptib
ity, χi , embedded in a medium with another magnetic suscep
bility, χe. We will assume that the macroscopic magnetic fiel
H0, produced by the external magnet in the media is uniform (t
effects ofH0 nonuniformity on FID signal were discussed in de
tail earlier (2)). The presence of the objects creates an additio
inhomogeneous mesoscopic magnetic fieldδH(r ):

δH(r ) =
N∑
1

δHn(r − rn, Än). [4]

HereδHn is a contribution of thenth object located at the point
rn; the letterÄn denotes geometrical parameters of the objec

In an experiment with a single broadband RF pulse followe
by a readout period, the FID signal normalized to the syste
volume,V , may be presented as

S(t) = η

V

∫
V

ρ(r ) exp(−t/T2(r )) exp(−iω(r )t) dr , [5]

whereη is a coefficient depending on external parameters (ha
ware sensitivity, external magnetic field, flip angle, etc.), th
standard factor exp(−t/T2) describes the dissipative relaxation
mechanism, andρ(r ) is the local spin density at a pointr . The
local NMR frequency at the positionr , ω(r ), has contributions
from all objects and is equal toω(r ) = γh(r ), whereh(r ) is
a projection of the local nuclear magnetic field,h(r ), on the
direction of the external fieldH0. In the Lorentzian approxima-
tion (see, e.g., Ref. (18)), which is fairly precise for isotropic

forliquids, h(r ) = H0(1+ 4πχe/3)+ δH(r ), in the medium and
h(r ) = H0(1+ 4πχi/3)+ δH(r ) inside the objects (we assume
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that the magnetic susceptibilitiesχi,e are small enough to ignore
nonlinear inχ effects).

The integration in Eq. [5] is taken over all the medium volum
V , which includes the volume occupied by the objects,v, and
the volume outside them,V0 = V−v. Therefore, the total signa
S(t) can also be divided into two parts,

S(t) = Se(t)+ Si (t), [6]

where the functionsSe(t) andSi (t) are contributions to the signa
from the regions outside and inside the objects, respectivel

The expression [5] for the NMR signal is written for the sp
cific spatial distribution of the objects and their parametersÄn.
In reality, it should be averaged over all possible positions
the objects in the medium and over all possible values of
parametersÄn, namely, their orientation in space, size, sha
and other internal degrees of freedom, if any. To average
functionsSe and Si over rn, andÄn, we should introduce the
corresponding distribution functions,P1(rn) and P2(Än). Sim-
ilar to Ref. (9) we assume that the total volume fraction of t
objects,ζ , is small enough to ignore their overlapping. Ther
fore, for a statistically random and homogeneous distribut
over positions of the spheroids, the functionsP1(rn) have the
form

P1(rn) drn = drn

V − vn
' drn

V
, [7]

wherevn is thenth object volume,vn ¿ V . The averaged func
tions S̄e(t) andS̄i (t) can be written in the form

S̄i (t) = ηiρiζ exp
(−t

/
T (i)

2 − iω0t
)
si (t),

[8]
S̄e(t) = ηeρe(1− ζ ) exp

(−t
/

T (e)
2 − iω0t

)
se(t).

Hereζ = v/V is the volume fraction of the objects in the syste
under consideration,ρi andρe are the spin density inside and ou
side the objects, respectively (in our calculations the spins in
and outside the objects are assumed to be distributed uniform
The frequencyω0 = γ H0(1+4πχe/3) will be considered as the
frequency of the rotating frame, and all results will be presen
with respect to this reference frequency. The dimensionless
malized factorssi (t) andse(t) determining contributions to the
signal relaxation due to dephasing of spins inside and out
objects have the form

si (t) =
∫

P2(Ä)

v(Ä)
dÄ

∫
V i

dr exp[−i δωi (r , Ä)t ], [9]

se(t) =
∫ P2(Ä) d(Ä)

1− 1

V

∫ N
×
Ve

dr{1− exp[−i δωe(r , Ä)t ]} , [10]
L DEPHASING 109

e,

l
.
-

of
the
e,
the

e
e-
on

m
-
ide
ly).

ed
or-

ide

whereδωi,e(r , Ä) is the frequency shift (with respect to the bas
frequencyω0) inside and outside an object with the paramet
Ä. The spatial integration in Eqs. [9] and [12] is over the reg
inside (Vi ) and outside (Ve) a single object, respectively. Below
we will refer to thesi (t) andse(t) as internal and external de
phasing functions, respectively. In the statistical limitN →∞,
V→∞, N/V = const, the external dephasing function can
written as

se(t) = exp[−ζ f (t, Ä)] [11]

f (t, Ä) =
∫

dÄ

v(Ä)

∫
Ve

dr{1− exp[−i δωe(r , Ä)t ]}. [12]

FREQUENCY SHIFT INDUCED BY SPHEROIDS

Equations [8]–[12] are rather general and can be applie
any two-compartment system (with the restrictions mention
above). Further progress can be achieved if the objects’ sha
specified. If an object of arbitrary shape is placed in a unifo
applied magnetic field,H0, a magnetic fieldH = H0 + δH
inside and outside the object, and, consequently, the frequ
shiftsδωi,e(r , Ä) = γ [h(i,e)(r , Ä)− h0] will vary in magnitude
and direction throughout the media in a complicated man
according to the Maxwell equations. In some special cases,
distributions can be found analytically; for example, expressi
for a magnetic field distortion created by a magnetized sph
or infinitely long cylinder are well known and can be found
textbooks.

In the present paper we consider more general geometric
ies, namely, ellipsoids of revolution (spheroids), for which t
field distribution can also be found in an analytical form. T
models of spheres and infinitely long cylinders are particu
cases of spheroids and can be obtained from the present m
in the corresponding limits.

The magnetic field inside the arbitrarily oriented sphero
has been discussed in the literature on numerous occasion
shown by Maxwell (19), a magnetic field,H(i) , inside a homo-
geneous ellipsoid is uniform, although its direction is not n
essarily the same as the external field,H0. An elegant approach
to this calculation can be found, for example, in Ref. (20). Here
we exploit a similar approach to calculate a distribution of t
inhomogeneous magnetic field outside the spheroids.

The static magnetic field created by any magnetized ob
can be found by solving the Laplace equation for the magn
potential,8,

H = −∇8, ∇28 = 0, [13]

with the standard boundary conditions on the ellipsoid’s surfa
namely, continuity of the potential and the normal compon
of the magnetic induction
8(i) = 8(e), B(i)
n = B(e)

n [14]
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(hereafter the upper indices (i) and (e) will refer to functions
side and outside the ellipsoid, respectively). Such a problem
be solved in the case when the body surface coincides with on
the coordinate surfaces in one or another curvilinear coordin
system. For general ellipsoids, it is the ellipsoidal coordina
and for the particular case of interest, it is the spheroidal co
dinates{σ, τ, ϕ} that are connected with Cartesian coordina
by the relationships

x = l [(σ 2± 1)(1− τ 2)]1/2 cosϕ,

y = l [(σ 2± 1)(1− τ 2)]1/2 sinϕ, [15]

z = lστ.

Hereafter the signs “+” and “−” correspond to the oblate an
prolate spheroidal coordinates, respectively. These coordin
cover the space by a manifold of confocal spheroids with the
tance between foci, 2l , lying on theZ axis for prolate spheroida
coordinates and in the plane perpendicular to theZ axis for
oblate spheroidal coordinates.

The parametersσ, τ, ϕ are defined in the intervals

1≤ σ ≤ ∞, −1≤ τ ≤ 1, 0≤ ϕ ≤ 2π [16]

for prolate spheroidal coordinates, and

0≤ σ ≤ ∞, −1≤ τ ≤ 1, 0≤ ϕ ≤ 2π [17]

for oblate spheroidal coordinates.
The coordinate surfaces,σ = const, are given by

x2+ y2

l 2(σ 2± 1)
+ z2

l 2σ 2
= 1. [18]

The parameterσ “numerates” the spheroids by defining the
size. Parametersτ andϕ define a position on the surface [18
(ϕ is an azimuth angle andτ is an analogue of cosθ in the
spherical coordinates).

Let us consider a spheroid obtained by rotating an ellipse w
half-axesa andc about thec axis. If we want the surface of thi
spheroid to coincide with one of the coordinate surfaces,
should adjust the foci of the coordinate system with those of
given spheroid, i.e., orient the rotation axis along the Cartes
axis Z and putl = |a2− c2|1/2. In the case of the given prolate
c > a, and oblate,c < a, spheroids, its surface coincides wi
the coordinate surface

σ = σ0 =



[1− (a/c)2]−1/2, c = lσ0,

a = l
(
σ 2

0 − 1
)1/2

, c > a

[(a/c)2− 1]−1/2, c = lσ0,

a = l
(
σ 2

0 + 1
)1/2

, c < a.

[19]
The space inside and outside the spheroid corresponds toσ < σ0

andσ > σ0, respectively.
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The limiting case of the sphere can be reached by
ting σ0 → ∞, l → 0, σ0l = const for both prolate and obla
spheroids. In the caseσ0 → 1, l → ∞, l (σ 2

0 − 1)1/2= const
a prolate spheroid degenerates into an infinitely long cylin
The caseσ0→ 0 for oblate spheroids corresponds to an infin
plate.

Because of the axial symmetry about theZ axis, we can as
sume without loss of generality that the applied magnetic fi
H0 lies parallel to theX Z plane of the Cartesian coordina
system,

H0 = (H0x, 0, H0z) = (H0 sinα, 0, H0 cosα). [20]

The Laplace equation in the spheroidal coordinates has
form

∂

∂σ

[
(σ 2± 1)

∂8

∂σ

]
+ ∂

∂τ

[
(1− τ 2)

∂8

∂τ

]
+ (σ 2± τ 2)

(σ 2± 1)(1− τ 2)

∂28

∂ϕ2
= 0. [21]

Solving this equation with the boundary conditions [14] (s
the details in Appendix A), the frequency shiftsδωe outside the
spheroid can be written as a function of the spheroidal coo
nates{σ, τ, ϕ} and the angleα,

δω
(e)
± = δωsσ0

(
σ 2

0 ± 1
)
h(e)
± (σ, τ, ϕ;α). [22]

Here

δωs = 1/tc = 4πγ H0(χi − χe) [23]

is the characteristic frequency shift,

h(e)
+ = cos2 α

(
cot−1 σ − σ

σ 2+ τ 2

)
+ sin 2α

τ cosϕ

σ 2+ τ 2

×
(

1− τ 2

σ 2+ 1

)1/2

+ sin2 α

[
1

2

(
σ

σ 2+ 1
− cot−1 σ

)
+ σ (1− τ 2) cos2 ϕ

(σ 2+ 1)(σ 2+ τ 2)

]
, [24]

h(e)
− = cos2 α

(
σ

σ 2− τ 2
− coth−1 σ

)
+ sin 2α

τ cosϕ

(σ 2− τ 2)

×
(

1− τ 2

σ 2− 1

)1/2

+ sin2 α

[
1

2

(
coth−1 σ − σ

σ 2− 1

)
+ σ (1− τ 2) cos2 ϕ

(σ 2− 1)(σ 2− τ 2)

]
. [25]
The frequency shift inside the spheroid can be conve-
niently expressed in terms of the demagnetizing factors,nx,z

±
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[A14]–[A15]:

δω
(e)
± = −δωs

[
nz
±(σ0) cos2 α + nx

±(σ0) sin2 α − 1

3

]
[26]

(the last term in Eq. [26] accounts for the difference betwe
the macroscopic field,Bi , and the local field in the Lorentzia
approximation, see, e.g., (18)).

It is important to note that the expressions [24]–[26] depe
on the spheroids’ axesa andc only through the dimensionles
parameterσ0 [19], i.e., through the ratioa/c, and do not depend
on the distance between its foci,l .

Thus, in the case of spheroids, the parameterÄ introduced in
Eq. [4] includes three quantities describing the form and orien
tion of the spheroid:l , σ0, andα, and averaging in Eqs. [9]–[10
should be done over these three quantities with appropriate
tribution functions. Therefore the distribution functionP2(Ä) is
a product

P2(Ä) = Pl (l )Pσ0(σ0)Pα(α), [27]

wherePl (l ), Pσ0(σ0), andPα(α) are the distribution functions fo
the distance between the spheroid’s foci, the spheroid’s sh
and the angle between its rotation axis and the external mag
field. The distribution functionPσ0(σ0) depends on particular
of the system. In this paper we restrict ourselves to the cas
which all the spheroids are similar, i.e., have the same ratio o
half-axes, (a/c)= const. In this particular case, the parameterσ0

is fixed.
For a random uniform distribution of the spheroids’ axes

rections (see, e.g., Ref. (3)),

Pα(α) = sinα

2
, 0≤ α ≤ π. [28]

As mentioned above, the space inside and outside the sph
corresponds toσ < σ0 andσ > σ0, respectively. The frequenc
shift inside the spheroid is described by Eq. [26] and does
depend on coordinates. The internal dephasing functionsi (t) [9]
takes the form

s±i (t) =
π∫

0

dα
sinα

2
exp

{
−iψ

[
nz
±(σ0) cos2 α

+ nx
± (σ0) sin2 α − 1

3

]}
, [29]

where
ψ = δωst. [30]
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The external dephasing functionse(t) [11], describing the con-
tribution of the media outside the spheroids, can be written

s±e (t) = exp[−ζ f±(σ0, t)], [31]

f±(σ0, t) = 3

4πβ

π∫
0

dα
sinα

2

∞∫
σ0

dσ

1∫
−1

dτ

2π∫
0

dϕ(σ 2± τ 2)

×{1− exp
[−iψβh(e)

± (σ, τ, ϕ;α)
]}
, [32]

where

β = σ0
(
σ 2

0 ± 1
) = (a

c

)2
∣∣∣∣∣1−

(
a

c

)2
∣∣∣∣∣
−3/2

. [33]

When writing Eq. [32], we took into account that the volum
elementdV in the spheroidal coordinates is equal to

dV = l 3(σ 2± τ 2) dσ dτ dϕ, [34]

and the volume of the spheroid with the half-axesa andc is

v = 4π

3
a2c = 4π

3
l 3σ0

(
σ 2

0 ± 1
) = 4π

3
l 3β. [35]

It should be noted that for a given volume fraction,ζ , the
functionssi,e(t) do not depend on the distribution functionPl (l ).
Just the same situation takes place for the particular case
spheres and infinitely long cylinders considered in Ref. (9). This
is a result of the general scaling law valid for the static dephas
regime (21). As mentioned in the Introduction, for the particu
case of spherical and cylindrical objects, the independenc
gradient echo relaxivity (in fact, the functionf (t)) from objects’
size in the static dephasing regime has been confirmed
experimentally and by the Monte Carlo simulations in Re
(10, 12).

THE INTERNAL DEPHASING FUNCTION si(t)

Let us begin by analyzing the functionsi (t). Taking into ac-
count the identity 2nx

± + nz
± = 1, it is easy to see thatsi (t)

depends on time and demagnetizing factor of the spheroid
in the combination

p(t) = ψ(nx
± − nz

±) = (δωst)(1− 3nz
±)/2. [36]

The integral in Eq. [29] can be expressed in terms of Fres
functionsC(x) andS(x) (see, e.g., Ref. (22)),

si (t) = si (p(t)) =
(
π

2|p|
)1/2

exp(i p)
[
C
(|p|1/2)
− i sgn(p)S
(|p|1/2)]. [37]
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FIG. 1. The real (solid line) and imaginary (dashed line) parts of the inte
dephasing functionsi [37]. The parameterp is proportional to the FID time,t ,
and is defined by Eq. [36].

It can be easily verified that the real part ofsi (t) is an even
whereas the imaginary part is an odd function ofp. The real and
imaginary parts of the functionsi are shown in Fig. 1 for the
casep > 0.

Note, in the degenerate case of spheres,nx
± = nz

± = 1/3, p ≡
0. In this case, apparently, spins inside all objects (spheres)
the same frequency. Moreover, the local field in the Lorentz
approximation coincides with the local field in the external m
dia, h0, and the frequency shift is absent; hence, no signal
phasing occurs,si (t) = 1.

The asymptotic forms of the function [37] are

si ≈
1− 2

45 p2+ i 8
2835p3, p¿ 1,

1
2

(
π
|p|
)1/2

exp
[
i · ( p

3 − π
4 sgnp

)]
, |p| À 1.

[38]

In the particular case of infinitely long cylinders, for whichnx
− =

1/2, nz
− = 0, the asymptotic expressions [38] coincide w

those obtained in Ref. (14) with the exception of the coeffici
ati p3 due to a misprint in Ref. (14) (private communication with
V. Kiselev).

As si (t) is a universal function and depends ont only through
the parameterp, the time dependence of the signal produc
by spheroids of different shape differs only in a time scale.
example, for spheroids close to spherical, when|nx

± −nz
±| ¿ 1,

the small-p range takes place for very long real time,δωs t ∼
|nx
± − nz

±|−1 À 1, and this range tends to infinity for a pu
sphere.

THE EXTERNAL DEPHASING FUNCTION se(t)

Equations [31] and [32] describe the signal attenuation

to the spin dephasing outsides the spheroids. For the short
scale, whenψ = δωst ¿ 1, the exponent in Eq. [32] can be
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expanded in series and, with accuracy toψ2, all the integrals
in Eq. [32] can be taken exactly. The real part of the functi
f±(σ0, t) for the prolate (f−) and oblate (f+) spheroids turn ou
to be proportional tot2,

Re[ f±(σ0, t)] = k±(σ0)(δωst)
2+ O(δωst)

4, [39]

k−(σ0) = σ0

30

[
σ0
(
4−3σ 2

0

)+ 2
(
σ 2

0−1
)(

3σ 2
0−2

)
× coth−1σ0− 3σ0

(
σ 2

0−1
)2

(coth−1 σ0)2
]
, [40]

k+(σ0) = σ0

30

[− σ0
(
4+ 3σ 2

0

)+ 2
(
σ 2

0 + 1
)(

3σ 2
0 + 2

)
× cot−1σ0− 3σ0

(
σ 2

0 + 1
)2

(cot−1 σ0)2
]
, [41]

whereas its imaginary part is negligibly small, Im[f±(σ0, t)] =
O(ψ3). Such a behavior of the functionf is similar to that for
the models of spheres and cylinders considered in (9).

The coefficientsk±(σ0) have the following asymptotic form
(recalling that for the oblate spheroids 0< σ0 <∞, and for the
prolate spheroids 1< σ0 <∞):

k−(σ0) =



1
30 +

(
σ0−1

15

)[−2+ ln 2
(σ0−1)

]
,

(σ0− 1)¿ 1 (c¿ a),
2
45 − 2

1125σ 4
0
− 4

2625σ 6
0
,

σ0À 1 (a→ c),

[42]

k+(σ0)


πσ0
15 −

(3π2+ 32)σ 2
0

120 , σ0¿ 1 (a¿ c),

2
45 − 2

1125σ 4
0
+ 4

2625σ 6
0
, σ0À 1(c→ a).

[43]

As a function of the spheroid half-axes ratio (a/c), the
coefficient k in Eq. [39] is a single function, the interva
0 < (a/c) < 1 and 1< (a/c) < ∞ referring to the prolate
and oblate spheroids, respectively (see Eq. [19]). The de
dencek = k(a/c) is shown in Fig. 2. At the point (a/c) =
1 (σ0 → ∞), corresponding to the limiting case of sphe
the functionk(a/c) has a maximumkmax = 2/45, and in the
limit (a/c) → 0 (σ0 → 1), when the prolate spheroid elo
gates into an infinitely long cylinder, the coefficientk = 1/30,
which coincides (however, note difference in notation) with
results obtained in Ref. (9). If the ratio (a/c) → ∞(σ0 →
0), the oblate spheroid degenerates into an infinite plate,
k+ → 0.

In the long-time regime, whenψ À 1, we consider firs
the caseσ0 À 1, which corresponds to nearly spherical o
timejects. For spin outside the objects (σ ≥ σ0 À 1), the func-
tions h(e)

± (σ, τ, ϕ;α) in Eqs. [24] and [25] can be substantially
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FIG. 2. The coefficientk [39] defining a short-time (quadratic) behavior o
the external dephasing function (se = exp[−ζk(δωst)2]) as a function of the
aspect ratio (a/c).

simplified,

h(e)
± (σ, τ, ϕ;α) = 1

σ 3

{
1

3
− [τ cosα+ (1− τ2)1/2 sinα cosϕ

]2}
[44]

(in fact, this approximation is valid already forσ ≥ 2). Substi-
tuting Eq. [44] into the intergral [32] and integrating overα and
ϕ, we get

f±(σ0, t)

= 3

β

1∫
0

du

∞∫
σ0

σ 2 dσ

{
1= exp

[
−i
ψβ

σ 3

(
1

3
−u2

)]}
. [45]

Calculating the intergral [45] forψ À 1,β À 1 we obtain

f±(σ0, t) ' fs(t) = C1ψ − 1− iC2ψ,
[46]

C1 = 2π

9
√

3
' 0.403, C2 ' 0.053.

Such an asymptotic behavior exactly coincides with the re
of Ref. (9) for the model of spheres.

An asymptotic expression similar to Eq. [46] can also
obtained for an arbitraryβ (Eq. [33]) in the long-time limit
βψ À 1. A comparison with numerical calculations shows th
the functionf (σ0, t) can be approximated by a straight line wi
the same slopeC1 = 0.403 but with a constant depending o
σ0:
f±(σ0, t)'C1ψ− C3

σ0
(
σ 2

0 ± 1
)−1− iC2ψ, C3 ' 0.04. [47]
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In the caseβ ≥ 1 the asymptotic behavior [47] takes plac
for anyψ À 1. However, due to the smallness of the coefficie
C3, the second term in Eq. [47] essentially contributes only
sufficiently smallβ (long “cigars,” for whichβ ≈ 2(σ0−1)¿ 1,
or thin “pancakes,” for whichβ ≈ σ0¿ 1). In the caseβ ¿ 1,
there exists an intermediate time interval,

ψ = δωst À 1, βψ ¿ 1. [48]

Let us consider the case of the prolate spheroids withσ0→ 1
(long “cigars”). It can be shown that in this limit the integral i
Eq. [32] is mainly contributed by the interval ofσ close to 1,
and the functionh(e)

− [25] can be approximated by

h(e)
− '

sin2 α

4(σ − 1)
cos 2ϕ

[
1+ O

(
(σ − 1)1/2

)]
. [49]

Substituting Eq. [49] into Eq. [32], we obtain after integration

f−(σ0, t) ' fc(t) = 1F2

(
−1

2
;

{
3

4
,

5

4

}
;−ψ

2

16

)
− 1, [50]

where1F2(α; {β, γ }; x) is the so-called generalized hyperge
metric function. This function is not in common use; therefo
we provide its definition and some properties in Appendix
The expression [50] does not depend on the parameterσ0 and,
in fact, describes the limiting caseσ0 = 1, corresponding to an
infinitely long cylinder. Its asymptotic behavior, which can b
obtained by using Eq. [B3], coincides with that given in Ref. (9)
for the model of randomly oriented cylinders:

fc(t) '
{
ψ2

30 , ψ ¿ 1,

ψ

3 − 1, ψ À 1.
[51]

The short-time asymptote of the functionfc(t) coincides with
the cylindrical limit (σ0 = 1) of the expression [42].

However, the behavior of the functionf−(σ0, t) even for rather
small values of (σ0− 1)∼ 10−3 (a/c ∼ 1 : 20) differs substan-
tially from that of fc(t). We fitted the numerical results for sever
values ofσ0(σ0−1= (1÷ 5)·10−3) at the interval 30< ψ < 80
to the straight lines

f−(σ0, t) ' k1(σ0)ψ − k2(σ0), [52]

and obtained the following interpolation formulas for the coe
ficientsk1,2(σ0),

k1(σ0) ' 1

3
+ 0.62(σ0− 1)1/2,

[53]
k2(σ0) ' 1+ 10(σ0− 1)1/2.
Thus, for the spheroid with a small aspect ratio (long “cigars”)
we can distinguish three characteristic time intervals of different
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behavior of the functionf−(σ0, t):(A)ψ ≤ 1, where f− ∼ t2

(see Eq. [39]); (B) 1¿ ψ ≤ 1/β, where the cylinder-like ap
proximation [52] takes place; and (C)ψ À 1/β, where the
function f− is described by the sphere-like expression [4
The transition between the intervals (A) and (B) takes pl
atψ = δωst ≈ 4.5 practically regardless of the parameterσ0.
The transition between the intervals (B) and (C) takes plac
the characteristic time,tcs ≈ (β · δω0)−1. This time increases
as the aspect ratio of the spheroids, (a/c), decreases,tcs→ ∞
whenσ0→ 1, and for pure infinitely long cylinders the interv
(C) does not exist. Although the sphere-like interval (C) ex
for any finite value of the parameterσ0, if the intrinsic time,T2, is
much less than the characteristic time,tcs, only the cylinder-like
behavior of the functionf−(σ0, t) can be observed. When th
ratio (a/c) increases, the characteristic timetcs decreases, an
for σ0 ∼ 1.05 the intermediate interval (B) practically vanishe
All the three characteristic time intervals can be observed
some intermediate values of the parameterσ0.

A general picture of the time dependence of the real par
the function f−(σ0, t) is shown in Fig. 3 for the prolate sphero
with σ0 = 1.002, (a/c ≈ 1 : 16), 1.01 (a/c ≈ 1 : 7), and
1.04(a/c ≈ 1 : 3.6. The difference in the slope between t
curves varies in the interval between1

3 (infinite cylinder, dashed
line in Fig. 3) and 0.4 (spherical asymptote, dotted line). A
tailed analysis shows that in the interval 10< ψ < 100 curve
1, corresponding to the small valueσ0 = 1.002, can be approx
imated by the straight line with the parameters character
to the cylinder-like interval (B) [52], whereas curve 3, corr
sponding toσ0 = 1.04, is described at the same interval by t
sphere-like asymptote [47] (interval (C)) and is parallel to
dotted line corresponding to the spherical limit [46]. Both int
vals (B) and (C) are present for the curve 2, corresponding to

FIG. 3. The real part of the functionf− [32] defining the external dephasin
functions−e = exp[−ζ f−(t)] for the spheroids with different aspect ratio:a/c =
1 : 16 (σ0 = 1.002),a/c = 1 : 7 (σ0 = 1.01), anda/c = 1 : 3.6 (σ0 = 1.04).

The dashed line represents the cylindrical approximationfc [50]; the dotted line
represents the spherical asymptote [46];9 = δωst .
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intermediate valueσ0 = 1.01: in the interval 10< ψ < 40 it
can be approximated by the cylinder-like straight line [52], a
in the interval 60< ψ its behavior is described by the sphe
asymptote [47].

For the oblate spheroids, the characteristic behavior of
dephasing functionf+(σ0, t) in the interval (B) described abov
does not take place because, in contrast to an infinitely
cylinder, an infinite plate (the limiting case of the “pancake
σ0→ 0) does not create any inhomogeneous field distortio

CONCLUDING REMARKS

In the previous sections we presented specific feature
the external dephasing function by modeling the inclusion
spheroidal objects. However, some important features of
behavior of this function take place for objects of arbitra
geometry.

First, in the short-time regime, the dependence of the exte
function,se(t), which provides the main contribution to the to
dephasing of the signal, is similar to Eq. [39] for any object o
finite size. Indeed, for a sufficiently small time, the exponen
the integrand in Eq. [12] can be expanded into series, and the
nonzero real term is quadratic int , which gives the dependenc
Re[se(t)] ∼ t2 (the only exception is a model of point dipole
considered in Ref. (1), for which the field created by a dipo
tends to infinity when approaching the dipole, and the expo
cannot be expanded in a series).

The long-time asymptotic behavior of the dephasing fu
tion se(t), similar to the sphere-like dependence [47], is a
characteristic to object of any geometry. To explain it, let
consider one object (spheroid, for example), creating out
its boundaries an inhomogeneous magnetic field distortion
fecting the precessing spins. Att= 0 all spins start precessio
with the same phase, but due to inhomogeneity of the mag
field, this begins to dephase; once a phase difference bet
two spins achievesπ , we can make the approximation that the
two spins no longer contribute to the total signal. A time nee
to break the coherent precession of two spins is on the o
of tb ∼ π/δω, whereδω is the frequency shift between th
spins,δω = γ · δH . As the field distortion,δH , created by
the object, decreases with a distance from the latter, the c
sponding dephasing timetb increases, and the dephasing proc
can be considered as a outward propagating wave of pec
kind, which can be called “a dephasing wave.” The dephas
induced signal damping is proportional to the volume fract
covered by this wave and is described by the functionf (t, Ä)
introduced by the expression [12]. In the system consistin
many objects, each of them can be considered as a sour
one dephasing wave, and the regions covered by different w
overlap. In the case of randomly distributed objects with su
ciently small volume fraction,ζ ¿ 1, this overlapping can b
readily taken into account by means of the simple probab

approach and is described by the exponent exp[−ζ f ] similar to
that in Eq. [11].
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In the beginning of the dephasing process, the dephasing w
propagation strongly depends on the specific object geom
However, when the wave covers the volume much larger t
that of the object, all of the increase of the covered volume is
to regions far from the object. The field distortion created by
object at long distance does not depend on the object geom
and is the same as for a sphere or a point dipole. Conseque
in the long-time limit,t > tcs (tcs is some characteristic time)
the increase of the functionf (t) (in fact, its time derivative) is
the same as for the sphere model and the asymptotic beh
of f (t) is similar to Eq. [47],

f (t) ' C1ψ − iC2ψ + C̃, [54]

whereC1,2 are given in Eq. [47] and are independent from the o
ject geometry whereas the constantC̃ is geometry-dependent. I
should be noted, however, that in a real experiment, this asy
totic behavior can be observed only if the relaxation timeT2

does not exceed the characteristic time,tcs, which is geometry-
dependent (e.g., in the case of the spheroids, the characte
time tcs= (βδω0)−1).

The results obtained demonstrate a rather complicated be
ior of the NMR signal evolution, which substantially deviat
from the standard exponential (T∗2 -like) decay (in particular, the
system distinguishes three characteristic time intervals). T
can be applied for more adequte interpretation of experim
tal MRI data when the magnetic resonance signal is affec
by the vascular network (BOLD contrast, susceptibility contr
agent), trabecular bones, alveolar walls of the lung, or red bl
cells.

Note also that a signal behavior around a spin echo timeτe

can be obtained by substitutingt → |t − 2τe| in the functions
si,e [9]–[12].

APPENDIX A

Field Distortion Created by a Spheroid

Let us seek the solution of Eq. [21] in the form

8 = 80(x, z)− H0zzF(z)(σ )− H0xx F(x)(σ ), [A1]

where80 is the magnetic potential corresponding toH0,

80(x, z) = −(H0xx + H0zz). [A2]

Since Eq. [21] as well as the boundary conditions [14] are line
we can separate equations for the functionsF (x)(σ ) andF (z)(σ).
Substituting Eq. [A1] into Eq. [13], we obtain for the func
tionsF (x,z)(σ ) the ordinary differential equations, which can b
readily solved. Taking into account that far from the spher

8→ 80(x, z), i.e., F (x,z)(σ )→ 0 atσ → ∞, these solutions
for the prolate (F+) and oblate (F−) spheroid can be written in
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the form

F (x,z)
± (σ ) = A(x,z)

± I (x,z)
± (σ ),

I (x)
± (σ ) =

{1
2

(
σ

σ 2+ 1 − cot−1 σ
)
,

1
2

(
coth−1 σ − σ

σ 2− 1

)
,

I (z)
± (σ )=

{
coth−1 σ − 1

σ
,

1
σ
− coth−1 σ,

[A3]

whereA(x,z)
± are constants.

Thus, the magnetic potential outside the spheroid can be w
ten as

8
(e)
± = −l H0

{
[(σ 2± 1)(1− τ 2)]1/2 cosϕ

(
1+ A(x)

± I (x)
± (σ )

)
× sinα + στ(1+ A(z)

± I (z)
± (σ )

)
cosα

}
. [A4]

Inside the spheroid the field is uniform and the magnetic p
tential is

8
(i)
± = −

(
a(x)
± H0xx + a(z)

± H0zz
)
. [A5]

The coefficientsA(x,z)
± anda(x,z)

± can be obtained from the bound
ary conditions on the spheroid’s surface [14]. The norm
components of the magnetic induction inside and outside
spheroid are equal to

B(i,e)
n = µi,eH i,e

n = −µi,eg−1/2
σσ

∂8(i,e)

∂σ
, [A6]

whereµi,e= 1+ 4πχi,e are the permeability of the spheroid an
the media, respectively;gσσ is theσσ -element of the curvature
tensor,gσσ = l 2(σ 2 ± τ 2)(σ 2 ± τ 2)−1. Substituting Eqs. [A3]–
[A6] into the boundary conditions [14], we find that

A(x,z)
± = δµσ0

(
σ 2

0 ± 1
)[

µe+ δµσ0
(
σ 2

0 ± 1
)
I (x,z)
± (σ0)

] ,
[A7]

a(x,z)
± = µe[

µe+ δµσ0
(
σ 2

0 ± 1
)
I (x,z)
± (σ0)

] ,
whereδµ = µi − µe = 4π ·1χ .

In the case of para- or diamagnetic media and objects w
very small susceptibilities,χi,e¿ 1, we can neglect the secon
term in the denominators and consider

A(x)
± ' A(z)

± ' σ0
(
σ 2

0 ± 1
)
δµ. [A8]

The magnetic field, corresponding to the potential8(e), has
the components

Hx = H0x + H0xx A(x)
±
∂ I (x)
± (σ )

∂x
+ H0zz A(z)

±
∂ I (z)
± (σ)

∂x
,

[A9]
(x) (z)
Hz = Hoz+ H0xx A(x)
±
∂ I± (σ )

∂z
+ H0zz A(z)

±
∂ I± (σ)

∂z
.
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The projection of the total magnetic field on the direction
the applied field,H0, is equal to

H (e) = Hx sinα + Hz cosα. [A10]

Substituting Eq. [A9] into Eq. [A10] and using Eqs. [15], [A3
we obtain

H (e)
± = H0+ δH (e)

± ,

δH (e)
+ = δµH0σ0

(
σ 2

0 + 1
){

cos2 α

(
cot−1 σ − σ

σ 2+ τ 2

)

+ sin 2α
τ cosϕ

σ 2+ τ 2

(
1− τ 2

σ 2+ 1

)1/2

+ sin2 α

[
1

2

(
σ

σ 2+ 1

− cot−1 σ

)
+ σ (1− τ 2) cos2 ϕ

(σ 2+ 1)(σ 2+ τ 2)

]}
, [A11]

δH (e)
− = δµH0σ0

(
σ 2

0−1
){

cos2 α

(
σ

(σ 2− τ 2)
− coth−1 σ

)

+ sin 2α
τ cosϕ

(σ 2−τ 2)

(
1−τ 2

σ 2−1

)1/2

+ sin2 α

[
1

2

(
coth−1 σ

− σ

σ 2− 1

)
+ σ (1− τ 2) cos2 ϕ

(σ 2− 1)(σ 2− τ 2)

]}
. [A12]

Using Eqs. [A3] and [A7], the uniform field distortion insid
the spheroid,δH (i)

± , can be written in terms of the demagnetizi
factor of the ellipsoid of revolution,n(x,z)

± ,

δH (i)
± = −δµ H0(nz

± cos2 α + nx
± sin2 α), [A13]

nx
± =

1

2


σ0
(
σ 2

0 + 1
)(

cot−1 σ0− σ0

σ 2
0+1

)
,

σ0
(
σ 2

0 − 1
)(

σ0

σ 2
0−1
− coth−1 σ0

)
,

[A14]

nz
± =

σ0
(
σ 2

0 + 1
)(

1
σ0
− cot−1 σ0

)
,

σ0
(
σ 2

0 − 1
)(

coth−1σ0− 1
σ0

)
.

[A15]

The demagnetizing factors for a spheroid satisfy the iden
2nx
± + nz

± = 1. In particular, for a spherenx
± = nz

± = 1
3; in the

cylindrical limit, σ0 → 1, nx
− = 1

2, n
z
− = 0; in the plate limit,

σ0 → 0, nx
+ = 0, nz

+ = 1. The numerical tables of the de

magnetizing factors for ellipsoids were first given in Refs. (23)
and (24).
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APPENDIX B

Generalized Hypergeometric Function

The generalized hypergeometric function1F2(α; {β, γ }; x) is
given by the series (see, e.g., Ref. (22))

1F2(α; {β, γ }; x) =
∞∑

k=0

(α)k

(β)k(γ )k

xk

k!
, [B1]

where (α)k = α(α + 1)(α + 2) · · · (α + k− 1).
The standard (Gaussian) hypergeometric function is

2F1({α, β}; γ ; x) =
∞∑

k=0

(α)k(β)k

(γ )k

xk

k!
. [B2]

The asymptotic behavior of the function1F2(−1/2; {3/4,
5/4};−x2/16), which appears in Eq. [50], is

1F2

(
−1

2
;

{
3

4
,

5

4

}
;− x2

16

)
=
{

1+ x2

30, x ¿ 1,

|x|
3 , x À 1.

[B3]
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