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A theory of the NMR signal dephasing due to the presence of
tissue-specific magnetic field inhomogeneities is developed for a
two-compartment model. Randomly distributed magnetized objects
of finite size embedded in a given media are modeled by ellipsoids
of revolution (prolate and oblate spheroids). The model can be ap-
plied for describing blood vessels in a tissue, red blood cells in the
blood, marrow within trabecular bones, etc. The time dependence
of the dephasing function connected with the spins inside of the ob-
jects, s, is shown to be expressed by Fresnel functions and creates a
powder-type signal in the frequency domain. The short-time regime
of the dephasing function for spins outside the objects, s, is always
characterized by Gaussian time dependence, s, ~ exp[—¢Kk(t/t:)?],
with ¢ being a volume fraction occupied by the objects, t. being
a characteristic dephasing time, and the coefficient k depending
on the ellipsoid’s shape through the aspect ratio of its axes (a/c).
The long-time asymptotic behavior of s, is always “quasispherical”-
linear exponential in time, s ~ exp(—¢Ct/t;), with the same
“spherical” decay rate for any ellipsoidal shape. For long prolate
spheroids (a/c) < 1, there exists an intermediate characteristic
regime with a linear exponential time behavior and an aspect-ratio-
dependent decay rate smaller than ((C/t;). © 2001 Academic Press
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INTRODUCTION

orders of magnitude smaller than the voxel silZkesoscopic
scale refers to distances that are much smaller than the vox
size but much bigger than the atomic and molecular scale. Mes
scopic magnetic field inhomogeneities originate from internal
tissue-specific sources, and hence could provide important il
formation on biological tissue structure and function.

While at the earlier stages of NMR development most of the
efforts were concentrated on the spin echo (SE) signal evoll
tion, recent developments in MRI have focused mostly aroun
free-induction decay (FID) signals. Major areas of interest hav
developed from important discoveries in functional MR] §)
and MRI of trabecular boné( 6). For example, in the case of
blood oxygenation level-dependent (BOLD) contrast in MRI,
paramagnetic deoxyhemoglobinin venous blood creates a mes
scopic inhomogeneous magnetic field in the tissue surroundir
the blood vessel network. This inhomogeneous field causes Fl
NMR signal dephasing. Numerous attempts to quantitate th
blood oxygenation level and trabecular bone structure rely o
different theoretical models of NMR signal dephasiigi§. In
all these theoretical models an imaging voxel was described |
the framework of a two-compartment model, according to whict
the magnetized objects (blood vessel, etc.) occupying a volur
fraction, ¢, with a magnetic susceptibility;, are embedded in
a given media (tissue matrix) with a magnetic susceptibifity,

Traditionally, it was assumed that the presence of magnetize

It is well known that magnetic inhomogeneities play a signbjects modifies t/he time dependence of the FID NMR signe
ficant role in the process of magnetic resonance signal evoluti@,a factor expt-Ryt) (Lorentzian signal shape),
and an analysis of this phenomenon is one of the classic topics of

S(t) = S(t) exp=Rot), (1]

magnetic resonance theor) (Magnetic inhomogeneities can
be of different origin, size, etc., and they affect the NMR signal
relaxation in different ways, some of them being undesirabléhere S(t) is a signal that would exist in a media free of ob-
with others bringing useful information about the system undggcts. However, the theoretical considerati@ypredicted a non-
investigation. In application to MRI, these inhomogeneities cdrprentzian behavior of the FID signal for those objects that cal
be roughly divided into three categories: macroscopic, medee modeled as randomly spatially distributed spheres, parall
scopic, and microscopic, according to their relative size scaidinitely long cylinders, or infinitely long cylinders with ran-
(2). Macroscopicscale refers to magnetic field changes over disomly distributed axis directions. In the short-time interval the
tances that are larger than the imaging vokitroscopicscale signal modification factor is proportional to expi*t?),

refers to changes in magnetic field over distances that are com-
parable to atomic or molecular size, i.e., over distances many

S{t) = So(t) exp(-A't?), [2]

1090-7807/01 $35.00
Copyright© 2001 by Academic Press
All rights of reproduction in any form reserved.

107



108 SUKSTANSKII AND YABLONSKIY

whereas only in the long-time interval can the signal decay GENERAL THEORY
be described in terms of thig, relaxation rate constant equal _ . _ .
to As previously demonstrated,(9), in many practically impor-

tant cases of biological systems nuclear motion does not subst:
tially affect dephasing of a FID signal caused by susceptibility
R, =C¢/te, te=[4my(x — xe)Hol L. [3] induced mesoscopic magnetic field inhomogeneities. In the

circumstances, NMR signal dephasing due to field inhomc

geneities occurs before molecular diffusion averages out tl
In Eq. [3]y is a nuclear gyromagnetic ratio akid is an external phases accumulated by different nuclear magnetic moments
magnetic field. The paramet@ris a numerical factor dependingthe so-calledtatic dephasing regin(&DR). High external mag-
onthe geometry of the magnetized objects. Itis equal to 0.409 figtic field, large susceptibility difference, and large length-scal
spheres and/; for randomly distributed infinitely long cylin- susceptibility inclusions favor the static dephasing regime (se
ders (note that the numeric coefficient in the characteristic tirgétails in Ref. 9)). For example, for the blood vessel network af
tc in [3] is defined slightly different to that in Ref9)). These Ho = 1.5Tthe SDRisvalidifan average radius of a blood vesse
theoretically predicted values of the coefficiéharre in a good R > 7 um. Typical values oR in the human brain are 3-m
agreement with the results of Monte Carlo simulationisg, for small capillaries, 10-5@m and larger for venules, veins,
10, 12 for different geometrical structures. It should also betc. It means that diffusion phenomena do not play an importa
mentioned that the result of RefdQ, 129 confirm an important role in the NMR signal formation for the mid-to-large vesse
conclusion of the theoretical analys®) that in the static de- network. For higher external fielddo > 4 T, SDR dominates
phasing regime the constadtdoes not depend on cylinders’ orfor all blood vessels. In all further consideration, we assume th
spheres’ radii. the criterion of validity of the SDR is satisfied.

The Gaussian relaxation rate constdxitalso depends on Consider the two-compartment system consisting of a larg
the objects’ geometry and the characteristic tig€9). It was numberN >> 1, of magnetized objects of magnetic susceptibil
hypothesized and proved with phanto®) @ndin vivo (17) ity, xi, embedded in a medium with another magnetic suscep
studies that an analysis of this non-Lorentzian FID signal shabiity, xe. We will assume that the macroscopic magnetic fielc
can provide important information on tissue structure. Howevétp, produced by the external magnetin the media s uniform (tr
real biological objects (blood vessels, for example) cannot Bects ofHo nonuniformity on FID signal were discussed in de-
precisely described as infinitely long cylinders or spheres. tail earlier @)). The presence of the objects creates an addition
better model for blood vessels, in particular, should take intBhomogeneous mesoscopic magnetic fidr):
consideration the finite size of their straight segments. This is
an important issue since bo# [2] and R, [3] depend strongly N
on the objects’ geometry. SH(r) = Z SHn(r — rn, Qn). [4]

We will demonstrate in this paper that for objects of arbi- 1
trary geometry there generally exist not two but three different
time regimes: (1) Gaussian regime similar to [2] for short timageresH,, is a contribution of theith object located at the point
when only nuclei closed to objects give contribution to the FIP, : the letterQ, denotes geometrical parameters of the object:
signal dephasing, (2) first Lorentzian regime similar to [3] with |n an experiment with a single broadband RF pulse followe

parameters depending on the objects’ geometry (here mainly By-a readout period, the FID signal normalized to the syste
clei that are at distances not exceeding the largest object’s sizglume,V, may be presented as

hence “sensing” objects’ shape, give contribution to the signal

dephasing, and (3) second Lorentzian, or “spherical’ regime n .

(here mainly nuclei that are at distances much bigger than the ~ S() = ¢/ / p(r)expt/Ta(r)) exp(—iw(r)t)dr,  [5]
largest object’s size, hence “sensing” objects as point dipoles or %

spheres, give contribution to the signal dephasing).

To be able to extract the information on a tissue structumheren is a coefficient depending on external parameters (har
details of the FID signal should be elucidated. Herein we willare sensitivity, external magnetic field, flip angle, etc.), the
establish a quantitative relationship between a FID signal estandard factor exp{t/ T,) describes the dissipative relaxation
velope and the objects’ geometry in the framework of statistinechanism, angd(r) is the local spin density at a point The
cal approachq) for magnetized objects that can be modeleldcal NMR frequency at the positian «(r), has contributions
by ellipsoids of revolution usually called spheroids (prolate drom all objects and is equal @(r) = yh(r), whereh(r) is
oblate). They can be viewed as an ellipse rotating about oneaoprojection of the local nuclear magnetic fieldy), on the
its principal axes. Prolate spheroids (“cigars”) can be considergidection of the external fieltly. In the Lorentzian approxima-
as an approximation for modeling the geometry of blood vesséiisn (see, e.g., Ref1@)), which is fairly precise for isotropic
of finite size and oblate spheroids (“pancakes”) as a model faguids, h(r) = Ho(1 + 47 xe/3) + 8H(r), in the medium and
red blood cells. h(r) = Ho(1+ 4r xi/3) + 8H(r) inside the objects (we assume
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that the magnetic susceptibilitigs. are small enough to ignore wheredw; «(r, ©2) is the frequency shift (with respect to the basic
nonlinear iny effects). frequencywg) inside and outside an object with the parameters
Theintegrationin Eq. [5] is taken over all the medium volumeR. The spatial integration in Egs. [9] and [12] is over the region
V, which includes the volume occupied by the objeetsand inside (Vi) and outsideV) a single object, respectively. Below
the volume outside thervy = V —v. Therefore, the total signal we will refer to thes(t) ands(t) as internal and external de-

S(t) can also be divided into two parts, phasing functions, respectively. In the statistical liMit—> oo,
V — 00, N/V =const, the external dephasing function can be
S(t) = S(t) + S(b), [6]  written as
where the function§(t) andS(t) are contributions to the signal Se(t) = exp[—¢ f (t, )] [11]

from the regions outside and inside the objects, respectively.
The expression [5] for the NMR signal is written for the spe- f(t, Q) = / d_Q / dr{1 — exp[-idwe(r, 2]} [12]

cific spatial distribution of the objects and their paramefgys v(2)

In reality, it should be averaged over all possible positions of Ve

the objects in the medium and over all possible values of the

parameters2,, namely, their orientation in space, size, shape,

and other internal degrees of freedom, if any. To average theEquations [8]-[12] are rather general and can be applied t

funCt'OnSSé.anO(If o_\éer_rn, ?ndg.z”’ éve shoui;jFlntsrzodugg the any two-compartment system (with the restrictions mentionec
corresponding distribution functionBy(r) and Py(2y). Sim- above). Further progress can be achieved if the objects’ shape
gpecified. If an object of arbitrary shape is placed in a uniform

objects,z, is small enough to ignore their overlapping. Theree—1 plied magnetic fieldHo, a magnetic fieldd = Hg + 8H

fore, for a statistically random and homogeneous distributiq side and outside the object, and, consequently, the frequenc
over positions of the spheroids, the functioRgr,) have the shiftsse ofr, 2) = [N, Q) — ho] will vary in magnitude

form and direction throughout the media in a complicated manne
drn _drp according to the Maxwell equations. In some special cases, fiel
Vv, V' [7] distributions can be found analytically; for example, expression:s
for a magnetic field distortion created by a magnetized spher

whereu, is thenth object volumey, < V. The averaged func- o jnfinitely long cylinder are well known and can be found in
tions S(t) and §(t) can be written in the form textbooks.

FREQUENCY SHIFT INDUCED BY SPHEROIDS

Pi(rn)dr, =

— 0 In the present paper we consider more general geometric bo

S(t) = nipi¢ exp(—t/T2 - |w0t)s(t), ies, namely, ellipsoids of revolution (spheroids), for which the

= . field distribution can also be found in an analytical form. The
_ _ _t/T _

So(t) = nepe(l — &) exp(—t/ T, — ot )se(t). models of spheres and infinitely long cylinders are particular

. . . . cases of spheroids and can be obtained from the present moc
Here¢ = v/V isthe volume fraction of the objectsin the syster'ﬂ1 the corresponding limits

updercon;ideratiom— an(_jpe are the spin densjtyinside apd c.)ut? The magnetic field inside the arbitrarily oriented spheroids
side the ijects, rgspectlvely (in our calculat!on_s the spins mSE?S been discussed in the literature on numerous occasions.
and outside the objects are assumed to be dlstrlputed uniformiy by Maxwell 19), a magnetic fieldH®, inside a homo-
The frequencybg = y Ho(1+47 xe/3) will be considered asthe oo ellipsoid is uniform, although its direction is not nec-
fr_equency of the rotating frame, and all results w ll be_ present%@sar"y the same as the external fiéld, An elegant approach
with respect to this reference frequency. The dimensionless ney

. - N thi lculati be found, f le, in RED)(H
malized factorss(t) andsg(t) determining contributions to the 'S calcliiation tan be found, for example, in )(Here

. . . S we exploit a similar approach to calculate a distribution of the
signal relaxation due to dephasing of spins inside and OUtsﬁﬁomogeneous magnetic field outside the spheroids.
objects have the form

The static magnetic field created by any magnetized objec
can be found by solving the Laplace equation for the magneti

S(t) :/ ZZ((QQ)) dQ/drexp[—i(Swi(r,Q)t], [9] potential,®,

H=-V®d, V20=0, [13]
1
s) = | [Paod@|1- | y -
\% with the standard boundary conditions on the ellipsoid’s surface
namely, continuity of the potential and the normal componen
of the magnetic induction

N
x/dr{l— exp[—iéwe(r,Q)t]}):| . [10]

Ve oM — q)(e)’ Brgi) — Brge) [14]
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(hereafter the upper indices (i) and (e) will refer to functions in- The limiting case of the sphere can be reached by pu
side and outside the ellipsoid, respectively). Such a problem darg o9 — oo, | — 0, ool = const for both prolate and oblate
be solved in the case when the body surface coincides with onspheroids. In the casey — 1,1 — oo, |(oZ — 1)Y/2=const
the coordinate surfaces in one or another curvilinear coordinatrolate spheroid degenerates into an infinitely long cylinde
system. For general ellipsoids, it is the ellipsoidal coordinatéBhe case, — O for oblate spheroids corresponds to an infinite
and for the particular case of interest, it is the spheroidal coqiate.

dinates{o, 7, ¢} that are connected with Cartesian coordinates Because of the axial symmetry about thexis, we can as-

by the relationships sume without loss of generality that the applied magnetic fielc
Ho lies parallel to theXZ plane of the Cartesian coordinate
x = [(c? + 1)(1— t?)]Y?cosy, system,
y =1[(c? £ 1)1 - %)]"*sing, [15]

Ho = (H0x7 0, HoZ) = (Ho sina, 0, Hg COSO(). [20]
z=lor.

The Laplace equation in the spheroidal coordinates has t
Hereafter the signs+" and “—" correspond to the oblate andform
prolate spheroidal coordinates, respectively. These coordinates
cover the space by a manifold of confocal spheroids with the dis- d 2 o d 2 0P
tance between focij 2lying on theZ axis for prolate spheroidal do [(U + 1)3_0—] e [(1 -t )a_f}
coordinates and in the plane perpendicular to Zhexis for 2 2 ’
oblate spheroidal coordinates. (@£ 90 _

_orrr) % [21]
The parameters, t, ¢ are defined in the intervals (02 £1)(1-7?) 9¢?

l<o<o00, -1<t<1 0<¢=<2n [16] Solving this equation with the boundary conditions [14] (se
) ) the details in Appendix A), the frequency shidis, outside the
for prolate spheroidal coordinates, and spheroid can be written as a function of the spheroidal coorc

O<o<oo, —1<7<1 0<g<21 [17] nates{o, 7, ¢} and the angle,

for oblate spheroidal coordinates. 80 = swsoo(a + )0, 7, 9; ). [22]
The coordinate surfaces,= const, are given by
5 5 5 Here
X z
=1 [18]
1%0?£1) %0 Sws = 1/tc = 4my Ho(xi — xe) [23]

The parametes “numerates” the spheroids by defining their o ]

size. Parameters and ¢ define a position on the surface [18]S the characteristic frequency shift,

(¢ is an azimuth angle and is an analogue of casin the

spherical coordinates). _ _ _ _ _ h(f) — coq (Cot—lo_ . ) 4 sina T COSgp
Let us consider a spheroid obtained by rotating an ellipse with 02412 02412

half-axesa andc about thec axis. If we want the surface of this

2 1/2
spheroid to coincide with one of the coordinate surfaces, we X (12 r ) +sirfa [} (ZL _ cotlo>
should adjust the foci of the coordinate system with those of the o°+1 2\o°+1
given spheroid, i.e., orient the rotation axis along the Cartesian o(1—1?)codyp
axisZ and put = |a2 — c?|%/2. In the case of the given prolate, + 021 D2+ TZ)} ; [24]
c > a, and oblate¢ < a, spheroids, its surface coincides with
the coordinate surface h® — cofu 9 _cothilo ) + sin 7 COsyp
02— 12 (02— 123
12 1-—1¢2 ) 1 . o
a=I(Z-1" c>a <= +sirfa > coth o — — 1
0 =09= ) 12 [19] 0% — o2 —
[(a/e)*— 1172, c=loo, o(1— 12)cod ¢
. 25
a=102+1)"% c<a (02—1)(02—12)} (23]

The space inside and outside the spheroid corresponds:teg The frequency shift inside the spheroid can be conve
ando > oy, respectively. niently expressed in terms of the demagnetizing factafs,
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[A14]-[A15]: The external dephasing functieft) [11], describing the con-
tribution of the media outside the spheroids, can be written as
. 1
50 = —Sws[ni(oo) coS a + N (oo) Sif ar — 5} [26] st (t) = exp[—¢ (o0, )], [31]

T 00 1 2
(the last term in Eq. [26] accounts for the difference between f.(cq,t) = 3 / doeﬂ / do / dr / do(o? + 12)
the macroscopic fieldd;, and the local field in the Lorentzian arp 9 2 RO
approximation, see, e.g1g)).

(0]

It is important to note that the expressions [24]-[26] depend x{1 - exg—iyph(o, 7. 9; 0)]}. (32]
on the spheroids’ axesandc only through the dimensionless
parameteby [19], i.e., through the ratia/c, and do not depend where

, 2 a 2 —-3/2
Eq. [4] includes three quantities describing the form and orienta- p=oolop £1) = (E) 1- (E)
tion of the spheroid;, oy, andx, and averaging in Egs. [9]-[10]
should be done over these three quantities with appropriate disyhen writing Eq. [32], we took into account that the volume

on the distance between its foki,
Thus, in the case of spheroids, the param@tertroduced in a

tribution functions. Therefore the distribution functi®(2) is  elementdV in the spheroidal coordinates is equal to

a product

[33]

dV =13(c? + 12 do dr d, [34]
P2(€2) = R (1) Py, (00) Pa (), [27]  and the volume of the spheroid with the half-agesndc is
o . 4,  Am 4 2 4 5
whereR (I), Py, (00), andP, («) are the distribution functions for v = ?a c= ?I oo(of £1) = ?I B. [35]
the distance between the spheroid’s foci, the spheroid’s shape,
and the angle between its rotation axis and the external magnetift should be noted that for a given volume fractian,the
field. The distribution functiorP,,(o0) depends on particulars functionss (t) do not depend on the distribution functiy(l).
of the system. In this paper we restrict ourselves to the case)ifst the same situation takes place for the particular cases

which all the spheroids are similar, i.e., have the same ratio of theheres and infinitely long cylinders considered in R&t.This
half-axes, §/c) = const. Inthis particular case, the parameter is a result of the general scaling law valid for the static dephasin

is fixed. regime (21). As mentioned in the Introduction, for the particular
For a random uniform distribution of the spheroids’ axes dease of spherical and cylindrical objects, the independence
rections (see, e.g., ReB)j, gradient echo relaxivity (in fact, the functidi(t)) from objects’

size in the static dephasing regime has been confirmed bot
sina experimentally and by the Monte Carlo simulations in Refs.
Pa(()t) = T, 0 <o <. [28] (10, 12

. L. . . THE INTERNAL DEPHASING FUNCTION s;(t
As mentioned above, the space inside and outside the spheroid ®

corresponds te < op ando > oo, respectively. The frequency | et us begin by analyzing the functiar(t). Taking into ac-
shift inside the spher0|d is dgscrlbed by Eq. [26] and does nQfunt the identity BX +nZ = 1, itis easy to see tha(t)
depend on coordinates. The internal dephasing funsffor{9]  depends on time and demagnetizing factor of the spheroid onl

takes the form in the combination
sE(t) = / da% exp{—i w[ni(oo) cof p(t) = y(nL — i) = (Bost)(1 - 3n%)/2. [36]
0
1 The integral in Eq. [29] can be expressed in terms of Fresne
+ X (00) sifa — 5} } , [29] functionsC(x) andS(x) (see, e.g., Ref2Q)),
T \ 12
where S0 =50 = (57 ) ewtpIC(pi?

¥ = Swt. [30] —i sgn@)S(|pl¥?)]. [37]
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expanded in series and, with accuracyyt®, all the integrals

in Eq. [32] can be taken exactly. The real part of the function
f (o0, t) for the prolate _) and oblate {.) spheroids turn out
to be proportional td?,
Re[f (00, t)] = Ki(00)(8wst)? + O(Swst)?, [39]
k-(00) = 23[00(4—307) + 2(0§—1) (305 -2)
. 7 \ \I\ /I P X COth_ldo — 30'0(05—1)2(00”1_1 00)2], [40]
30N 0
- O
Ky (00) = 3—;’)[ — oo(4+ 30¢) + 2(og + 1) (3¢ + 2)
-0.4 - x cot Yoy — 300(0g + 1)2(cot‘1 00)?],  [41]

FIG.1. Thereal(solidline) and imaginary (dashed line) parts of the internal
dephasing functios; [37]. The parametep is proportional to the FID timd,, o . ) o
and is defined by Eq. [36]. whereas its imaginary part is negligibly small, Imfoo, t)] =

O(¥3). Such a behavior of the functiohis similar to that for
It can be easily verified that the real part sft) is an even the models of spheres and cylinders considere@)in (
whereas the imaginary partis an odd functiopoThe realand  The coefficientsk, (oo) have the following asymptotic form
imaginary parts of the functiog are shown in Fig. 1 for the (recalling that for the oblate spheroids<Ocg < oo, and for the
casep > 0. prolate spheroids % og < 00):
Note, in the degenerate case of sphamgs= n; = 1/3,p =
0. In this case, apparently, spins inside all objects (spheres) have

the same frequency. Moreover, the local field in the Lorentzian 3T (% [—2+InEgl
approximation coincides with the local field in the external me- (o—1) <1 (c<a)
dia, ho, and the frequency shift is absent; hence, no signal de- k_(o0) =1 , 5 4 ’ [42]
phasing occurss(t) = 1. BT 1125¢ T 26287’
The asymptotic forms of the function [37] are 00> 1(@— ),
212 i.8 K3 2 2
N et Lt - pP<1, ro  BUESn g« 1(@a<kc),
SN 1212 P o [38] k(00) 2 2 4 [43]
A7) “expli - (5 - Zsanp)]. Ipl> 1. 5~ Toes T s 00> 1C— a).

In the particular case of infinitely long cylinders, for which =
1/2, nZ = 0, the asymptotic expressions [38] coincide with As a function of the spheroid half-axes ratia/€), the
those obtained in Ref. (14) with the exception of the coefficienpefficientk in Eq. [39] is a single function, the intervals
atip® due to a misprintin Ref1@) (private communication with 0 < (a/c) <1 and 1< (a/c) < oo referring to the prolate
V. Kiselev). and oblate spheroids, respectively (see Eq. [19]). The depe
As s(t) is a universal function and dependstamnly through dencek = k(a/c) is shown in Fig. 2. At the pointaj/c) =
the parametep, the time dependence of the signal producetl (co — o0), corresponding to the limiting case of sphere.
by spheroids of different shape differs only in a time scale. Fre functionk(a/c) has a maximunkmax = 2/45, and in the
example, for spheroids close to spherical, whgn—n%| <« 1, limit (a/c) — 0 (oo — 1), when the prolate spheroid elon-
the smallp range takes place for very long real tinda)st ~ gates into an infinitely long cylinder, the coefficidnt= 1/30,
InX —nZ|~1 » 1, and this range tends to infinity for a purewhich coincides (however, note difference in notation) with th

sphere. results obtained in Ref9]. If the ratio @/c) — oo(oo —
0), the oblate spheroid degenerates into an infinite plate, al
THE EXTERNAL DEPHASING FUNCTION s(t) ki — 0.

In the long-time regime, whery > 1, we consider first
Equations [31] and [32] describe the signal attenuation dtiee caseop > 1, which corresponds to nearly spherical ob-
to the spin dephasing outsides the spheroids. For the short tieas. For spin outside the objects & o¢ > 1), the func-
scale, when) = dwst « 1, the exponent in Eq. [32] can betions hgf)(a, 7, ¢; ) in EQs. [24] and [25] can be substantially
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1k In the case8 > 1 the asymptotic behavior [47] takes place
0.045 / sphere foranyy > 1. However, due to the smallness of the coefficient
Cs, the second term in Eq. [47] essentially contributes only for
sufficiently smallg (long “cigars,” for whichg ~ 2(cp—1) « 1,

or thin “pancakes,” for whiclg ~ op <« 1). In the case8 « 1,
there exists an intermediate time interval,

0.040

0.035 -

v =dot >1 By <KL [48]

0.030 4 Let us consider the case of the prolate spheroids ayith> 1
(long “cigars”). It can be shown that in this limit the integral in
Eq. [32] is mainly contributed by the interval ef close to 1,
and the functiorh(f)[25] can be approximated by

: .a,/c @© sirf o

10 T T 40 -1

FIG. 2. The coefficienk [39] defining a short-time (quadratic) behavior of
the external dephasing functioss (= exp[—¢k(Swst)?]) as a function of the
aspect ratiog/c).
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cos2 [1+O((c —1)Y?)].  [49]

Substituting Eqg. [49] into Eq. [32], we obtain after integration

2
)= 0 = 1R~ 5 {52~ ) -1 (50
simplified,
1(1 ) where;Fo(o; {8, v}; X) is the so-called generalized hypergeo-
h®o, 7, ;) = — { = — [z cosa + (1 — %) sina cosy | } metric function. This function is not in common use; therefore
o3 we provide its definition and some properties in Appendix B.
[44] The expression [50] does not depend on the paramgtend,
(in fact, this approximation is valid already for> 2). Substi- In fapt, descrlbes_ the limiting case = L corre_:spond_lng toan
tuting Eq. [44] into the intergral [32] and integrating oveand |nf|n|.tely long gylmder. Its asymptotic b_ehaV|or,.wh|c.:h can be
0, e get obtained by using Eq. [B3], cpmudes Wlth that given in R6J. (
for the model of randomly oriented cylinders:

f ,t 2
+(00. 1) 5 U<l
3 1 00 . fe(t) >~ ’ [51]
=E/du/azda{lzexp[—i—’§<§—u2>“. [45] 3-L ¢vy>»1
g
0 00 The short-time asymptote of the functidg(t) coincides with
_ _ _ the cylindrical limit cg = 1) of the expression [42].
Calculating the intergral [45] fog > 1, 8 >> 1 we obtain However, the behavior of the functidn (oo, t) even for rather
small values of¢p — 1) ~ 102 (a/c ~ 1:20) differs substan-
fi(op,t) >~ fs(t) = Ciyy — 1 —iCoy, tially from that of f.(t). We fitted the numerical results for several
o [46] values obp(op—1 = (1+5)-10-3) atthe interval 30< ¢ < 80
Ci=——~0403 C,~0.053 to the straight lines
1=3 73 2
f_(00, 1) = ki(00)¥ — ka(00), [52]

Such an asymptotic behavior exactly coincides with the result

of Ref. 9) for th? model of_sphe_re;. and obtained the following interpolation formulas for the coef-
An asymptotic expression similar to Eq. [46] can also bﬁcientsk (00)
obtained for an arbitrang (Eq. [33]) in the long-time limit 123707

By > 1. A comparison with numerical calculations shows that

1
the functionf (o9, t) can be approximated by a straight line with ki(oo) >~ 3 + 0.62(00 — 1)¥2,
the same slop€; = 0.403 but with a constant depending on [53]
oo: ko(00) ~ 1+ 10(0p — 1)Y/2.
C ) . . . Gt »
f4 (00, ) ~ Crp — 3 —1-iCoy, C3~004 [47] Thus, for the spheroid with a small aspectratio (long “cigars”)

oo(c¢ £1) we can distinguish three characteristic time intervals of differen
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behavior of the functionf_(oq, t):(A)y¥ < 1, wheref_ ~ t2 intermediate valuep, = 1.01: in the interval 10< ¢ < 40 it
(see Eq. [39]); (B) 1« v < 1/8, where the cylinder-like ap- can be approximated by the cylinder-like straight line [52], an
proximation [52] takes place; and (@) > 1/8, where the in the interval 60< v its behavior is described by the sphere
function f_ is described by the sphere-like expression [47@symptote [47].
The transition between the intervals (A) and (B) takes placeFor the oblate spheroids, the characteristic behavior of tt
aty = Swst &~ 4.5 practically regardless of the parametgr dephasing functiorf, (0o, t) in the interval (B) described above
The transition between the intervals (B) and (C) takes placed@ies not take place because, in contrast to an infinitely lor
the characteristic timegs ~ (8 - Swo)~L. This time increases cylinder, an infinite plate (the limiting case of the “pancakes,
as the aspect ratio of the spheroids/d), decreasedes — oo 0o — 0) does not create any inhomogeneous field distortion.
whenog — 1, and for pure infinitely long cylinders the interval
(C) does not exist. Although the sphere-like interval (C) exists CONCLUDING REMARKS
for any finite value of the parametey, if the intrinsic time T, is
much less than the characteristic tirhg,only the cylinder-like ~ In the previous sections we presented specific features
behavior of the functionf_ (oo, t) can be observed. When thethe external dephasing function by modeling the inclusions ¢
ratio (a/c) increases, the characteristic tirgedecreases, and Spheroidal objects. However, some important features of tt
for op ~ 1.05 the intermediate interval (B) practically vanisheehavior of this function take place for objects of arbitrary
All the three characteristic time intervals can be observed fggometry.
some intermediate values of the parameter First, in the short-time regime, the dependence of the extern
A general picture of the time dependence of the real part Biction,s(t), which provides the main contribution to the total
the functionf_ (oo, t) is shown in Fig. 3 for the prolate spheroiddephasing of the signal, is similar to Eq. [39] for any object of :
with oy = 1.002, @/c ~ 1 : 16), 1.01 §/c ~ 1 : 7), and finite size. Indeed, for a sufficiently small time, the exponent it
1.04(a/c ~ 1 : 3.6. The difference in the slope between thée integrandin Eq.[12] can be expanded into series, and the fi
curves varies in the interval betweétinfinite cylinder, dashed nonzero real term is quadratictinwhich gives the dependence
line in Fig. 3) and 0.4 (spherical asymptote, dotted line). A d&efs(t)] ~ t? (the only exception is a model of point dipoles,
tailed analysis shows that in the interval 20y, < 100 curve considered in Ref.1), for which the field created by a dipole
1, corresponding to the small valug = 1.002, can be approx- tends to infinity when approaching the dipole, and the expone
imated by the straight line with the parameters characteris@i@nnot be expanded in a series).
to the cylinder-like interval (B) [52], whereas curve 3, corre- The long-time asymptotic behavior of the dephasing func
sponding tasp = 1.04, is described at the same interval by thBon s(t), similar to the sphere-like dependence [47], is als
sphere-like asymptote [47] (interval (C)) and is parallel to theharacteristic to object of any geometry. To explain it, let u
dotted line corresponding to the spherical limit [46]. Both intecconsider one object (spheroid, for example), creating outsic
vals (B) and (C) are present for the curve 2, corresponding to ti& boundaries an inhomogeneous magnetic field distortion &
fecting the precessing spins. &£ 0 all spins start precession
5 Re f with the same phase, but due to inhomogeneity of the magne
- field, this begins to dephase; once a phase difference betwe
two spins achieves, we can make the approximation that these
two spins no longer contribute to the total signal. A time neede
to break the coherent precession of two spins is on the ord
of ty ~ n/éw, wheredw is the frequency shift between the
spins,w = y - §H. As the field distortionsH, created by
the object, decreases with a distance from the latter, the cori
sponding dephasing timgincreases, and the dephasing proces
can be considered as a outward propagating wave of pecul
kind, which can be called “a dephasing wave.” The dephasin
induced signal damping is proportional to the volume fractiol
covered by this wave and is described by the functigh 2)
introduced by the expression [12]. In the system consisting
" " ' ' ' many objects, each of them can be considered as a source
1 20 40 60 80 100 . . .
5 one dephasing wave, and the regions covered by different way
16,5, The real oartof the functioft. (321 definin the external deoasi overlap. In the case of randomly distributed objects with suffi
.. erealparto e tunctio erinin e external aepnasin : : : H
functions; = exp[—;pf_(t)] forthe sphero[ids]with diff?arent aspect raﬁgcz ’ Clem.ly small \{olume fraction; < 1, this overIgppmg can b(.:". ,
1:16 (o = 1.002).a/c = 1 : 7 (0o = 1.01), anda/c — 1: 36 (5o = 1.04). readily taken into account by means of the simple probabilit

The dashed line represents the cylindrical approximatids0]; the dotted line  @PProach and is described by the exponent-exf[ similar to
represents the spherical asymptote [4B}= Swst. that in Eq. [11].

20
35—-
30—'
25—'

20
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Inthe beginning of the dephasing process, the dephasing wéve form
propagation strongly depends on the specific object geometry.
However, when the wave covers the volume much larger than F*9(0) = A%2149(0),
that of the object, all of the increase of the covered volume is due

1 a 1 —1 1
to regions far from the object. The field distortion created by tr]e()(a _ ]2 ((,—2+1 — cot” a) . (z)(a) _ coth o — =,
object at long distance does not depend on the object geomeﬁy %(Cothflg — HZL_l) , * (% —coth o,
and is the same as for a sphere or a point dipole. Consequently, (A3]

in the long-time limit,t > tcs (tcs is some characteristic time),
the increase of the functiof(t) (in fact, its time derivative) is x.2)
the same as for the sphere model and the asymptotic behaW§f"eAL ~ are constants.

of f(t) is similar to Eq. [47], Thus, the magnetic potential outside the spheroid can be writ
ten as
f(t) ~ —i ® 4
(t) Cll/f ICZW +C, [5 ] (DSE) S HO{[(O_Z + 1)(1_ T2)]1/2 COS(p(l + Aﬁ_f) |ix)(0‘))
whereC, , are givenin Eq. [47] and are independent from the ob- x sina +ot(1+ A? If)(o)) cosa}. [A4]

ject geometry whereas the const@ris geometry-dependent. It

should be noted, however, that in a real experiment, this asympinside the spheroid the field is uniform and the magnetic po-
totic behavior can be observed only if the relaxation tife tential is

does not exceed the characteristic titgg,which is geometry- )

dependent (e.g., in the case of the spheroids, the characteristic ®Y = —(a¥Houx + a? Hoy2). [A3]
timetes = (B8wo) ™).

The results obtained demonstrate a rather complicated behBhe coefficient\®? andal*? can be obtained from the bound-
ior of the NMR signal evolution, which substantially deviated"y conditions on the spheroid's surface [14]. The normal
from the standard exponentidly-like) decay (in particular, the components of the magnetic induction inside and outside th
system distinguishes three characteristic time intervals). Thegheroid are equal to
can be applied for more adequte interpretation of experimen-
tal MRI data when the magnetic resonance signal is affected BU® = uj eH®e = —pui g
by the vascular network (BOLD contrast, susceptibility contrast
agent), trabecular bones, alveolar walls of the lung, or red bloggherey; . = 1 + 47 x; ¢ are the permeability of the spheroid and
cells. the media, respectively,, is theoo-element of the curvature

Note also that a signal behavior around a spin echo tifae Zensor,g,, =1%(c2 + t2)(c'2 + 2)~L. Substituting Eqs. [A3]-
can[ t)]e[obgained by substituting— |t — 2z¢| in the functions [A6] into the boundary conditions [14], we find that
S.e [91-[12].

71/23q>(i’e)

00 ao_ ’

[A6]

8;100(05 + 1)

(x.2) _
APPENDIX A [//Le + SMO’O(U(? + 1) |j([X'Z)(Uo)] .
Field Distortion Created by a Spheroid x2 Ue [A7]
. . = S 24 1) (%,2) ’
Let us seek the solution of Eq. [21] in the form [te + 8puoo(of £ 1) 1% (00)]

whereSu = i — e = 4w - Ay.

In the case of para- or diamagnetic media and objects witl
very small susceptibilities; ¢ <« 1, we can neglect the second
where®, is the magnetic potential corresponding-s, term in the denominators and consider

@ = Do(X, 2) — HorzFP(0) — HuxF® (o),  [A1]

®o(X, 2) = —(HoxX + Ho2). [A2] AY ~ AD ~ oo(of + 1)8 1. [A8]

_ . , The magnetic field, corresponding to the poten®é, has
Since Eq. [21] as well as the boundary conditions [14] are lineggq components

we can separate equations for the functiBf8(c) andF @ (o).

Substituting Eq. [Al] into Eq. [13], we obtain for the func- 9l (x)(O_) al(z)(a)
tions F*2(o) the ordinary differential equations, which canbe Hy = Hoy + HoxX AY =2 4 Ho,z AP —£ 2
readily solved. Taking into account that far from the spheroid 28 x [A9]
& — (X, 2), i.e., F*I (o) - 0 ate — oo, these solutions (X)a|ix)(g) (Z)8|§:Z)(o')

for the prolate F,) and oblate F_) spheroid can be written in Hz = Hoz + HoxX AL 37 + HozZ AL oz
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The projection of the total magnetic field on the direction of APPENDIX B

the applied fieldHo, is equal to
Generalized Hypergeometric Function

H® — H. sin H. cosa. A10 The generalized hypergeometric functida(e; {8, y}; X) is
xSiner = Fe [A10] given by the series (see, e.g., R&R))

Substituting Eq. [A9] into Eq. [A10] and using Egs. [15], [A3], @k xX
we obtain P {B, v X) = Z B K (B1]
H® = Hy + sHE, where @) = a(a + 1)@+ 2)- - (@ + k — 1).

The standard (Gaussian) hypergeometric function is

§H® = uHooo(of + l)! Co§oz<cot_1a - %)
o2+1

o X
y Falla, fliyig = 3 CHONC gy
+sinw 0¥ + sir? 1 o & 0k
al = ——
02+12 02+1 2\o?+1
2 co The asymptotic behavior of the functiorF.(—1/2;{3/4,
—cotle )+ o(l—t°)cos e [A11] 5/4);—x?/16), which appears in Eq. [50], is
(02 +1)(0? +7?)
3 5] x2 1+58, x<1,
(e _ 2 — — | = B
§H™ = §uHgoo (0§ 1){co§a(( 773 —coth™® ) 1F2< > {4 4} 16) {% C> 1 (B3]
. tcosp [1—t2\Y* 1 1
+ SIin hm (m) + S|n2a E coth o
o o(1— 12) co v ACKNOWLEDGMENTS
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Using Egs. [A3] and [A7], the uniform field distortion inside
the spheroidj Hj(t'), can be written in terms of the demagnetizing REFERENCES
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